Part Number Hot Search : 
ZR78L09 18818 1NHFT F12N50F AN590 BR86D C4060 5801101
Product Description
Full Text Search
 

To Download IRF2804SRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irf2804 irf2804s irf2804l hexfet ? power mosfet v dss = 40v r ds(on) = 2.0m ?  i d = 75a  www.irf.com 1 automotive mosfet hexfet ? is a registered trademark of international rectifier. description specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features com- bine to make this design an extremely efficient and reliable device for use in automotive applica- tions and a wide variety of other applications. s d g features  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax d 2 pak irf2804s to-220ab irf2804 to-262 irf2804l absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (see fig. 9) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested) sin g le pulse avalanche ener gy tested value  i ar avalanche current  a e ar repetitive avalanche ener gy  mj t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case ??? 0.45 c/w r cs case-to-sink, flat, greased surface 0.50 ??? r ja junction-to-ambient ??? 62 r ja junction-to-ambient (pcb mount, steady state)  ??? 40 max. 280 200 1080 75 10 lbf?in (1.1n?m) 330 2.2 20 670 1160 see fig.12a,12b,15,16 300 (1.6mm from case ) -55 to + 175 pd - 94436c
 
2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l=0.24mh, r g = 25 ? , i as = 75a, v gs =10v. part not recommended for use above this value.  i sd 75a, di/dt 220a/s, v dd v (br)dss , t j 175c.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994. max r ds(on) for d 2 pak and to-262 (smd) devices. s d g s d g static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 0.031 ??? v/c r ds(on) smd static drain-to-source on-resistance ??? 1.5 2.0 m ? r ds(on) to-220 static drain-to-source on-resistance ??? 1.8 2.3 v gs(th) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 130 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 160 240 nc q gs gate-to-source charge ??? 41 62 q gd gate-to-drain ("miller") charge ??? 66 99 t d(on) turn-on delay time ??? 13 ??? ns t r rise time ??? 120 ??? t d(off) turn-off delay time ??? 130 ??? t f fall time ??? 130 ??? l d internal drain inductance ??? 4.5 ??? nh between lead, 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 6450 ??? pf c oss output capacitance ??? 1690 ??? c rss reverse transfer capacitance ??? 840 ??? c oss output capacitance ??? 5350 ??? c oss output capacitance ??? 1520 ??? c oss eff. effective output capacitance ??? 2210 ??? diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 280 (body diode) a i sm pulsed source current ??? ??? 1080 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ???5684ns q rr reverse recovery charge ??? 67 100 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 32v v gs = 10v  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 75a  v gs = 10v, i d = 75a  t j = 25c, i f = 75a, v dd = 20v di/dt = 100a/ s  t j = 25c, i s = 75a, v gs = 0v  showing the integral reverse p-n junction diode. v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 10v  mosfet symbol v gs = 0v v ds = 25v v gs = 0v, v ds = 32v, ? = 1.0mhz conditions v gs = 0v, v ds = 0v to 32v ? = 1.0mhz, see fig. 5 v ds = v gs , i d = 250a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c r g = 2.5 ? i d = 75a v ds = 10v, i d = 75a v dd = 20v i d = 75a v gs = 20v v gs = -20v
 
www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 25c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4.0 5.0 6.0 7.0 8.0 9.0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 10v 20s pulse width 0 40 80 120 160 200 i d , drain-to-source current (a) 0 50 100 150 200 250 300 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 20s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v    


 
    
 
 
4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 1 10 100 1000 v ds , drain-tosource voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 12000 c , c a p a c i t a n c e ( p f ) cos s crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 40 80 120 160 200 240 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v vds= 20v vds= 8.0v i d = 75a 0.2 0.6 1.0 1.4 1.8 2.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v
 
www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 1e-006 1e-005 0. 0001 0. 001 0. 01 0. 1 t 1 , rectangular pulse duration (sec) 0. 001 0. 01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 75a v gs = 10v 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 300 i d , d r a i n c u r r e n t ( a ) limited by package
 
6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 400 800 1200 1600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j )        
 
www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 75a 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 10000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01
 
8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets  !" ? #$!"  ? !%"  ? #"&'"$!"  " ()" p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
     + - + + + - - -        ? !*+!%%"!,-  ? *" )"."  /  ? $  %%"!,011 ?  /  2"*"/!""  
 v ds 90% 10% v gs t d(on) t r t d(off) t f   % "3!4 1 5 0 0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms
 
www.irf.com 9 lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. 

 
 

   dimensions are shown in millimeters (inches) part number international rectifier logo example : this is an irf 1010 with assembly lot code 9b1m assembly lot code date code (yyww) yy = year ww = week 9246 irf1010 9b 1m a
 
10 www.irf.com  


 
 f 530s this is an irf530s with lot code 8024 as s emble d on ww 02, 2000 in the assembly line "l" as s e mb l y lot code int ernat ional rectifier logo part number dat e code ye ar 0 = 2000 we e k 02 line l  


  dimensions are shown in millimeters (inches)
 
www.irf.com 11 to-262 package outline dimensions are shown in millimeters (inches) to-262 part marking information e x a m p l e : t h i s i s a n i r l 3 1 0 3 l l o t c o d e 1 7 8 9 a s s e m b l y p a r t n u m b e r d a t e c o d e w e e k 1 9 l i n e c l o t c o d e y e a r 7 = 1 9 9 7 a s s e m b l e d o n w w 1 9 , 1 9 9 7 i n t h e a s s e m b l y l i n e " c " l o g o r e c t i f i e r i n t e r n a t i o n a l  igbt 1- gate 2- collector 3- emitter
 
12 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the automoti ve [q101] market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 08/03            

  
 dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.
note: for the most current drawings please refer to the ir website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRF2804SRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X